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Abstract

We review the asymptotic theory for standard errors in classical
ordinary least squares (OLS) inverse or parameter estimation prob-
lems involving general nonlinear dynamical systems where sensitivity
matrices can be used to compute the asymptotic covariance matrices.
We discuss possible pitfalls in computing standard errors in regions of
low parameter sensitivity and/or near a steady state solution of the
underlying dynamical system.
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1 Introduction

There is a growing interest in measures of uncertainty in many areas of
mathematical modeling as more sophisticated models are employed in biol-
ogy [4, 3, 8], chemistry, sociology [7], etc., as well as in the usual physical
and engineering sciences. In particular, there has been recent renewed ef-
forts by applied mathematicians in the area of inverse or parameter estima-
tion problems to attach measures of reliability to estimated quantities using
experiment data sets. Statisticians have for some time [9, 11, 15, 16, 19]
recognized the importance of such problems and have developed theory and
methodology to treat these. In particular, a rather extensive area of matu-
rity is the computation of standard errors (SE) and confidence intervals (CI)
for ordinary least squares (OLS) problems using what engineers and applied
mathematicians call sensitivity matrices [1, 10, 12, 13, 14, 18]. These can be
computed or approximated in a number of ways and for quite sophisticated
unknown “parameters” including functions and even probability measures
[2, 3, 5, 6]. A most frequently used framework for the computation of SE
is the asymptotic theory of estimators which, roughly speaking, guarantees
under certain conditions that as one uses more and more data in the inverse
problems, that one can approximate the estimator or sampling distribution
by a Gaussian with computable mean and covariance. As with most statisti-
cal theories, this asymptotic theory holds under quite specific hypotheses on
the statistical model assumed for the observation error (which may include
both model and measurement error) as well as assumptions on regularity of
the underlying problem and the method in which the increasing amount of
data is collected. In practice, most investigators are concerned with the form
of the error (e.g., independent identically distributed with constant variance
or constant coefficient of variation) but do not give much concern to either
the regularity hypotheses or the method of data collection. This can some-
times lead to surprising and seemingly perplexing results for unwary users.
The purpose of this note is to recall these results, discuss some pitfalls, and
illustrate with an example that shares qualitative features with many systems
encountered in wide-spread scientific applications. We focus specifically on
the phenomenon that increased sampling data often does not result in im-
provements in the estimates or in their associated statistical reliability as
embodied in their SE or CI. For example, when additional data is sampled
from a region near an equilibrium or steady state, the estimated values of
the problem generally do not improve. In fact, the confidence intervals for
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estimated values often increase in size as more data is taken. To discuss the
causes for this, we will illustrate ideas with the logistic growth population
model.

2 Summary of asymptotic theory for errors

We first give a general summary of the asymptotic theory for standard errors.
We assume that n scalar longitudinal observations (the extension to vectors
is completely straight-forward) are represented by the statistical model

Yj ≡ fj(β0) + εj, j = 1, 2, . . . , n, (1)

where fj(β0) is the model for the observations in terms of the state variables
and β0 ∈ Rp is a “set” of theoretical “true” parameter values (assumed
to exist in a standard statistical approach). For example, if one is given
a differential equation system ẋ = Γ(t, x(t), β), sampled at times tj, j =
1, 2, . . . , n, then fj(β) = x(tj, β).

We assume for our statistical model of the observation or measurement
process (1) that the errors εj, j = 1, 2, . . . , n, are independent identically
distributed (i.i.d.) random variables with mean E[εj] = 0 and constant
variance var[εj] = σ2

0, where of course σ2
0 is unknown. We then have that the

observations Yj are i.i.d. with mean E[Yj] = fj(β0) and variance var[Yj] =
σ2

0.
We consider estimation of parameters using an ordinary least squares

(OLS) approach. Thus we seek to use data {yj} for the observation process

{Yj} with the model to seek a value β̂n that minimizes

Jn(β) =
n∑

j=1

|fj(β)− yj|2. (2)

Since Yj is a random variable, we have that the estimator β̂n
OLS is also a ran-

dom variable with a distribution called the sampling distribution. Knowledge
of this sampling distribution provides uncertainty information (e.g., standard
errors) for the numerical values of β̂n obtained using a specific data set {yj}
(i.e., a realization of {Yj}) when minimizing Jn(β).

Under reasonable assumptions on smoothness and regularity (the smooth-
ness requirements for model solutions are readily verified using continuous
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dependence results for differential equations in most examples; the regularity
requirements include, among others, conditions on how the observations are
taken (more on this later) as sample size increases, i.e., n → ∞), the stan-
dard nonlinear regression approximation theory ([11], [15], [16], and Chap-
ter 12 of [19]) for asymptotic (as n → ∞) distributions can be invoked.
This theory yields that the sampling distribution β̂n(Y ) for the estimate β̂n,
where Y = {Yj}n

j=1, is approximately a p-multivariate Gaussian with mean

E[β̂n(Y )] and covariance matrix cov[β̂n(Y )] ≈ Σ0 = σ2
0[χ

T (β0)χ(β0)]
−1. Here

χ(β) = Fβ(β) is the n× p sensitivity matrix with elements

χjk(β) =
∂fj(β)

∂βk

and Fβ(β) ≡ (f1β(β), . . . , fnβ(β))T .

That is, for n large, the sampling distribution approximately satisfies

β̂n
OLS(Y ) ∼ Np(β0, σ

2
0[χ

T (β0)χ(β0)]
−1) := Np(β0, Σ0). (3)

There are typically several ways to compute the matrix Fβ. First, the
elements of the matrix χ = (χjk) can always be estimated using the forward
difference

χjk(β) =
∂fj(β)

∂βk

≈ fj(β + hk)− fj(β)

hk

,

where hk is an p-vector with nonzero entry in only the kth component. Al-
ternatively, if the fj(β) correspond to longitudinal evaluations x(tj, β) of
solutions x ∈ Rn∗ to a parameterized n∗-vector differential equation system
ẋ = Γ(t, x(t), β), then one can use the n∗ × p matrix sensitivity equations
(see [6] and the references therein)

d

dt

(
∂x

∂β

)
=

∂Γ

∂x

∂x

∂β
+

∂Γ

∂β

to obtain
∂fj(β)

∂βk

=
∂x(tj, β)

∂βk

.

Finally, in some cases the function fj(β) may be sufficiently simple so as to
allow one to derive analytical expressions for the components of Fβ. This is
the case for the problems addressed in this paper and hence for our efforts
we chose this latter approach in the examples below.
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Since β0, σ0 are not known, we must approximate them in

Σ0 = σ2
0[χ

T (β0)χ(β0)]
−1.

For this we follow standard practice and use the approximation

Σ0 ≈ Σ(β̂n) = σ̂2[χT (β̂n)χ(β̂n)]−1 (4)

where β̂n is the parameter estimate obtained, and the approximation σ̂2 to
σ2

0 is given by

σ2
0 ≈ σ̂2 =

1

n− p

n∑
j=1

|fj(β̂
n)− yj|2. (5)

Standard errors to be used in confidence interval calculations are thus given

by SEk(β̂
n) =

√
Σkk(β̂n), k = 1, 2, . . . , p (see [9]).

Finally, in order to compute the confidence intervals (at the 100(1−α)%
level) for the estimated parameters in our example, we define the confidence
level parameters associated with the estimated parameters so that

P{β̂n
k − t1−α/2SEk(β̂

n) < βn
k < β̂n

k + t1−α/2SEk(β̂
n)} = 1− α, (6)

where α ∈ [0, 1], and t1−α/2 ∈ R+. For a given α value (small, say α = .05
for 95% confidence intervals), the critical value t1−α/2 is computed from the
Student’s t distribution tn−p with n − p degrees of freedom. The value of
t1−α/2 is determined by P{T ≥ t1−α/2} = α/2 where T ∼ tn−p.

We note that when fj(β) = x(tj, β) as mentioned above when one is
taking longitudinal samples corresponding to solutions of a dynamical sys-
tem, the n × p sensitivity matrix depends explicitly on where in time the
observations are taken. Note also that the sensitivity matrix

χ(β) = Fβ(β) =

(
∂fj(β)

∂βk

)

depends on the number n and nature (e,g.,how taken) of the sampling times
{tj}. Moreover, it is the matrix [χT χ]−1 in (4) and the parameter σ̂2 in
(5) that ultimately determine the SE and CI. At first investigation of (5),
it appears that an increased number n of samples will drive σ̂2 (and hence
the SE) to zero as long as this is done in a way to maintain a bound on
the residual sum of squares in (5). But then we observe that the condition
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number of the matrix χT χ is also very important in these considerations
and increasing the sampling could possibly adversely affect the inversion of
χT χ. In this regard, we note that among the important hypotheses in the
asymptotic statistical theory (see p. 571 of [19]) are that

1

n
χT (β)χ(β) → X (β) as n →∞

with X (β0) nonsingular. It is this condition that is rather easily violated
in practice when one is dealing with data from differential equation systems
near an equilibrium or steady state. To illustrate this as well as related issues
regarding sensitivity that are often ignored in statistical discussions, we turn
to a simple example, the popular logistic growth or Verhulst-Pearl equation
[17], where analytic expressions are readily found and used to discuss the
ideas.

3 Logistic growth population models

We consider the dynamics

dx

dt
= rx

(
1− x

K

)

where K is the carrying capacity and r is the intrinsic growth rate. This is
the Verhulst-Pearl logistic equation [17]. The exact solution is readily solved

x

K

K/2

Figure 1: Solution to ODE
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for and is given by

x(t) =
K

1 +
(

K
x0
− 1

)
e−rt

.

This function has a flex point
(

d2x
dt2

= 0
)

at x̃ = K
2
.

We will examine the equivalent systems

ẋ = ax− bx2, (7)

which have solutions

x(t) =
a/b

1 + (a/b
x0
− 1)e−at

=
a

b + ke−at
(8)

with k = a
x0
− b. The solutions x(t) have an asymptote as t → ∞ at x∞ =

a
b

= K. Note that a = r and hence r
K

= b. When x0 > K, the solutions
x(t) are monotone decreasing functions with an asymptote at K. Similar
behavior (monotone increasing) is observed for solutions with x0 < K.

Standard errors will be examined for this example using both analyti-
cal calculations as well as numerical computations. The analytical deriva-
tions will show that if observations are taken in specific regions pertaining
to the solution curve, χT χ could approach a singular matrix, resulting in the
standard errors computed with the asymptotic theory becoming unbounded.
We expect that the numerical computations performed using MATLAB will
behave similar to the analytical results and therefore expect that the cal-
culations will go badly if observations are not correctly chosen. This will
reinforce the observation that in practical problems, sensitivity equations
and standard errors can be used to inform experimental design (e.g., so that
observations are taken appropriately to avoid such difficulties).

4 Analytical considerations

As stated earlier, we consider an ordinary least squares problem for the pa-
rameters β = (a, b, x0) with the approximate covariance matrix given by

Σ = σ̂2(χT χ)−1
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and the corresponding estimate of the standard error

SEj =
√

σ̂2(χT χ)−1
jj , j = 1 . . . n. (9)

Recall that

Σ = σ̂2(χT χ)−1

=
1

n− p

n∑
j=1

(f(tj, β̂)− yj)
2(χT χ)−1

=
1

n− p
(RSS)(χT χ)−1

where RSS denotes the residual sum of squares. In this example we have

χT =
∂x

∂β

T

=




∂x(t1)
∂a

· · · ∂x(tn)
∂a

∂x(t1)
∂b

· · · ∂x(tn)
∂b

∂x(t1)
∂x0

· · · ∂x(tn)
∂x0


 .

We will examine varying behavior in the model and the resulting sta-
tistical analysis depending on the region from which tj is sampled. To this
end, let R0 be the region where t ∈ [0, τ1], R1 be the region corresponding
to t ∈ [τ1, τ2], and R2 where t ∈ [τ2,∞) as depicted in Figure 2. We expect
differences in the ability to estimate parameters depending on the region in
which the solution is observed (sampled).

a/b

R
1

R
2R

0

τ
1 τ

2

x
0

Figure 2: Partition of solution curve into distinct regions.

We will examine behavior and anticipate finding three distinct situations.
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1. When data is sampled from region R0, the solution is insensitive to
the parameters a and b. If we attempt to estimate a or b from this
data, we expect to obtain large standard errors as χT χ approaches a
singular matrix as n →∞. Thus, the parameters a and b, as well as the
carrying capacity, K = a/b, cannot be estimated using data sampled
from R0 alone.

2. When sampling in R1 we suspect that estimating β with decent stan-
dard errors is possible, and using more data (up to a point) will improve
reliability (i.e., the corresponding SE).

3. When data is sampled from R2, the solution is insensitive to x0. If we
try to estimate x0 from this data, we expect to obtain large standard
errors because χT χ should again become ill-conditioned (approximately
singular) as n →∞. We cannot estimate a and b independently, how-
ever we should be able to estimate the carrying capacity K = a/b since
x(t) → K = x∞ as t →∞.

In order to consider the problem for data in different regions, we explicitly
solve the equation

ẋ = ax− bx2 (10)

for x, and then examine the partial derivatives ∂x
∂a

, ∂x
∂b

, and ∂x
∂x0

. Rewriting
the equation as

dx

x(a− bx)
= dt,

we obtain (by integrating and using partial fractions) the solution

x =
a

b + ke−at
.

Thus, we readily see that x(t) → K = a
b

as t →∞. Also note that x(t) → a
b+k

as t → 0. We will therefore denote x(0) = x0 = a
b+k

.
We easily compute the partial derivatives

∂x

∂a
=

b + (atk − b)e−at

(b + ke−at)2
,

∂x

∂b
=

−a(1− e−at)

(b + ke−at)2
,

∂x

∂x0

=
a2e−at

x2
0(b + ke−at)2

.
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The matrix χ is thus composed of these partial derivatives evaluated at points
t = t1, . . . , tn, i.e.,

χ =




∂x(t1)
∂a

∂x(t1)
∂b

∂x(t1)
∂x0

...
...

...
∂x(tn)

∂a
∂x(tn)

∂b
∂x(tn)
∂x0


 .

For use in approximation Σ of the covariance matrix we thus obtain the
matrix

χT χ =
n∑

j=1




(
∂x(tj)

∂a

)2
∂x(tj)

∂a

∂x(tj)

∂b

∂x(tj)

∂a

∂x(tj)

∂x0

∂x(tj)

∂b

∂x(tj)

∂a

(
∂x(tj)

∂b

)2
∂x(tj)

∂b

∂x(tj)

∂x0

∂x(tj)

∂x0

∂x(tj)

∂a

∂x(tj)

∂x0

∂x(tj)

∂b

(
∂x(tj)

∂x0

)2




.

We next consider the different regions in which we analyze Σ. We address
the asymptotic regions R0 and R2 first.

If we sample data from R0, where tj < τ1 for j = 1 . . . n, we have

∂x(tj)

∂a
≈ 0,

∂x(tj)

∂b
≈ 0,

∂x(tj)

∂x0

≈ 1,

as a result of

lim
t→0

∂x(tj)

∂a
= 0,

lim
t→0

∂x(tj)

∂b
= 0,

lim
t→0

∂x(tj)

∂x0

= 1.

Also note that
n∑

j=1

∂x(tj)

∂x0

∂x(tj)

∂x0

=
n∑

j=1

1 = n

for tj < τ1 in R0. Hence, in this region, we can make the approximation

χT χ ≈



0 0 0
0 0 0
0 0 n


 .
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In R0 we expect not to be able to accurately determine a or b, however
we should be able to estimate x0. Moreover, we must expect difficulties when
computing the standard errors for estimates of a and b. As additional data
points are sampled, SEa and SEb will increase because (χT χ)−1 approaches
a matrix with unbounded values in the first two diagonal elements.

Next we consider the region R2, where tj > τ2 for j = 1 . . . n, and note
that

lim
t→∞

∂x(tj)

∂a
=

1

b
,

lim
t→∞

∂x(tj)

∂b
= − a

b2
,

lim
t→∞

∂x(tj)

∂x0

= 0.

This implies that in R2

∂x(tj)

∂a
≈ 1

b
,

∂x(tj)

∂b
≈ − a

b2
,

∂x(tj)

∂x0

≈ 0,

and hence,

χT χ ≈
n∑

j=1




∂x(tj)

∂a

∂x(tj)

∂a

∂x(tj)

∂a

∂x(tj)

∂b
0

∂x(tj)

∂b

∂x(tj)

∂a

∂x(tj)

∂b

∂x(tj)

∂b
0

0 0 0




= n




1
b2

− a
b3

0

− a
b3

a2

b4
0

0 0 0




.

In this case the second column of χT χ is a scalar multiple, −a
b
, of column one,

and thus it is not possible to estimate a and b independently. Similar to the
standard errors corresponding to region R0, SEa and SEb will increase in size
with the additional sampling of data points. Also, in R2 there is difficulty
estimating x0 with any accuracy. The ill-posedness (ill conditioning) of χT χ
can be expected when computing the standard error of x0, and SEx0 will
also increase as more data points are sampled.
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In region R1, where τ1 < tj < τ2 for j = 1, . . . n, we note that the partial
derivative estimates differ greatly from the estimates in regions R0 and R2,
and in general the matrix χT χ will be well-conditioned. When R1 is included
in the sampling region, we should be able to recover decent estimates for a,
b, and x0 along with reasonable corresponding SE.

5 Implementation

We first considered inverse problems with exact (no-noise) simulated data.
MATLAB was used to compute numerical solutions to equation (7) for use
as the model {fj(β)} = {f(tj, β)} in (2). We create a simulated data set,
{yj}n

j=1, using the solution given by (8) with a specific β, denoted β0. That
is, we evaluate the analytic solution (8) at tj to obtain data yj. We restrict
the values of tj to the region from which data is sampled, and provide an
initial estimate β0 for the MATLAB ODE solver.

The cost function uses ode15s to approximate the solution and returns

Jn(β) =
n∑

j=1

|f(tj, β)− yj|2

where f(t, β) = x(t; a, b, x0) is the numerical approximation to the solution.
We use the MATLAB function fminsearch to optimize over β in order to
obtain the minimized cost Jn(β̂n). Here β̂n represents the optimized value of
β using n data points.

6 Results

The following are the results from three sets of simulated data: a relatively
flat curve with β0 = (0.5, 0.1, 0.1), a moderately sloped curve with β0 =
(0.7, 0.04, 0.1), and a steep curve with β0 = (0.8, 0.01, 0.1). For all three
curves, define R0 to be the region where t ∈ [0, 2], R1 is the region where
t ∈ [2, 12], and R2 is where t ∈ [12, 16]. Within each region, we record four
different initial guesses for the vector β0 = (a, b, x0). We will show a figure
corresponding to each set of simulated data plotted with the estimated curve
for one of the initial guesses. We will also examine the standard errors of β̂n

by uniformly sampling varied amounts of data with n = n0 + n1 + n2 where
ni represents the amount of data sampled from region Ri, i = 0, 1, 2.
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6.1 Region R0

When minimizing the OLS functional with data taken from region R0, the
model with the resulting parameters closely approximates the data curve
within R0; however, as seen in Figure 3, it does not come close to the data
set in other regions. We point out that that the graphs in Figure 3 correspond
to the first entries from each section of Table 1.
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Figure 3: Simulated data compared to the solution with estimated parame-
ters using data in the region R0 for the a) flat curve with β0 = (0.6, 0.2, 0.5)
b) moderate curve with β0 = (0.8, 0.1, 0.3) c) steep curve with β0 =
(0.7, 0.2, 0.5).

When optimizing Jn(β), we minimize the difference between model solu-
tion and data only in the region of interest. Note that the values for J13(β̂

13)

using data from R0 are close to zero in every case even when β̂13 is not close
to β0. Because of our previous analytical analysis, we are not surprised that
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The flat curve with β0 = (0.5, 0.1, 0.1) where K=5.

β0 J13(β
0) β̂13 J13(β̂

13) K̂
(0.6,0.2,0.5) 5.8587 (0.5415,0.3317,0.0991) .3766e−5 1.6328

(2,0.5,1) 89.7757 (0.6842,1.1442,0.0966) .7833e−4 0.598
(0.7,0.3,0.001) 0.398 (0.6132, 0.7294, 0.0976) .2799e−5 0.8407

(5,5,5) 33.991 (2.391,10.7157,0.0691) 0.0058 0.2231

The moderate curve with β0 = (0.7, 0.04, 0.1) where K=17.5.

β0 J13(β
0) β̂13 J13(β̂

13) K̂
(0.8,0.1,0.3) 3.6193 (0.7281,0.1552,0.0991) .4887e−5 4.6907
(2,0.5,0.4) 46.2021 (0.9510,1.0667,0.0919) .395e−3 0.8915
(0.3,0.05,1) 14.9077 (0.6920,0.0076,0.1003) .3658e−6 91.5778

(5,5,5) 33.0287 (3.1546,10.0916,0.0407) 0.0239 0.3126

The steep curve with β0 = (0.8, 0.01, 0.1) where K=80.

β0 J13(β
0) β̂13 J13(β̂

13) K̂
(0.7,0.2,0.5) 6.0063 (0.8339,0.1273,0.0987) .1123e−4 6.5524

(0.9,0.005,0.2) 1.7988 (0.799,0.0064,0.1) .6183e−8 125.7549
(0.6,0.03,0.9) 28.6298 (0.8015,0.015,0.0999) .3084e−7 53.3319

(5,5,5) 32.4756 (3.6576,9.7304,0.0246) 0.0442 0.3759

Table 1: The initial and optimized parameters from region R0.

the OLS procedure does not lead to accurate estimates for the values of a or
b in this region, and we can see from Table 1 that the numerical results sup-
port this previous analysis. Moreover, as expected, the estimation procedure
did return a reasonable estimate for the true value of x0.

6.2 Region R1

Note in Figure 4 that by minimizing with data from region R1, the best fit
model provides a decent approximation in R1 as well as in the other regions.
This is what we predicted based on the previous analysis regarding the χT χ
matrix. The graphs in the figure correspond to the initial entries from each
section of Table 2. The solution is dynamically changing in R1 with the
asymptotes in the individual curves lying outside of this region. Hence it is
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possible to obtain reasonable estimates for true values β0 using data sampled
from R1.

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time

D
at

a

The flat curve with β0
61

 =( 0.6, 0.2, 0.5).

Model
Data

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

Time

D
at

a

The moderate curve with β0
61

 =( 0.8, 0.1, 0.3).

Model
Data

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

Time

D
at

a

The steep curve with β0
61

 =( 0.7, 0.2, 0.5).

Model
Data

Figure 4: Simulated data compared to the solution with estimated pa-
rameters using data from the region R1 for the a) flat curve with β0 =
(0.6, 0.2, 0.5) b) moderate curve with β0 = (0.8, 0.1, 0.3) c) steep curve with
β0 = (0.7, 0.2, 0.5).

The minimized cost, J61(β̂
61), is very small for reasonable initial guesses

as is seen in Table 2. When we used the initial guess of β0 = (5.0, 5.0, 5.0), the
procedure returned a poor estimate of the parameter values. However, when
reasonable initial guesses were used, the values of β0 were nearly exactly
approximated. This illustrates the local convergent properties of the OLS
procedure.
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The flat curve with β0 = (0.5, 0.1, 0.1) where K=5.

β0 J61(β
0) β̂61 J61(β̂

61) K̂
(0.6,0.2,0.5) 68.5101 (0.5,0.1,0.1) .1449e−6 4.7
(2.0,0.5,1) 319.5682 (0.4999,0.1,0.1) .4067e−6 5

(0.7,0.3,0.001) 263.4515 (0.5,0.1,0.1) .1757e−6 4.9999
(5,5,5) 204.9234 (6.4942,2.9899,5.1836) 121.1291 2.1721

The moderate curve with β0 = (0.7, 0.04, 0.1) where K=17.5.

β0 J61(β
0) β̂61 J61(β̂

61) K̂
(0.8,0.1,0.3) 1.3315e3 (0.6999,0.04,0.1) .1052e−4 17.4997
(2.0,0.5,0.4) 3.2091e3 (0.7,0.04,0.1) .1117e−4 17.4980
(0.3,0.05,1) 2.6895e3 (0.7,0.04,0.1) .8611e−6 17.4988

(5,5,5) 5.2903e3 (7.6425,0.938,5.9823) .2173e4 8.1481

The steep curve with β0 = (0.8, 0.01, 0.1) where K=80.

β0 J61(β
0) β̂61 J61(β̂

61) K̂
(0.7,0.2,0.5) 8.7989e4 (0.7999,0.01,0.1) .3903e−3 79.9890

(0.9,0.005,0.2) 2.5627e4 (0.7998,0.01,0.1) .3798e−3 79.99
(0.6,0.03,0.9) 4.7167e4 (0.7999,0.01,0.1) .3864e−3 79.9864

(5,5,5) 9.6307e4 (7.9785,0.2681,4.9371) .458e5 29.7608

Table 2: The initial and optimized parameters using data from region R1.

6.3 Region R2

When carrying out the OLS estimation problem with data selected form R2,
we observe (Figure 5, Table 3) that each model curve with the estimated
parameters is a good approximation to the data as the curves approach the
carrying capacity K. However, when we compare the model with estimated
parameters to the data over the entire region, we see that it is not in rea-
sonable agreement. In particular, the only closely approximated part of the
data is x∞ = K = a

b
.

Moreover, when we use data only from region R2, the estimate for each
parameter is poor, which is consistent with our earlier analytical consider-
ations. Recall that the analysis of χT χ for sampling in R2 suggests that it
might be possible to approximate the relationship between a and b without
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Figure 5: Simulated data plotted versus the model with estimated parame-
ters using data from region R2 for the a) flat curve with β0 = (0.6, 0.2, 0.5)
b) moderate curve with β0 = (0.8, 0.1, 0.3) c) steep curve with β0 =
(0.7, 0.2, 0.5).

independently estimating the parameters. Indeed, Table 3 reveals that we
do obtain a reasonable approximation for K. Furthermore, note that we are
not able to estimate x0 with data from R2, and as a result the optimized
value x̂0 is near the initial guess instead of the true value. The algorithm
cannot improve much on the initial guess for x0 when using data from R2

and hence leaves it essentially unchanged from the initial guess. Similarly, it
appears that the optimized value â is relatively close to the initial guess for
a0, whereas b̂ is adjusted accordingly to produce the optimized value of K̂,
the only quantity to which the data in R2 provides any sensitivity.
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The flat curve with β0 = (0.5, 0.1, 0.1) where K=5.

β0 J25(β
0) β̂25 J25(β̂

25) K̂
(0.6,0.2,0.5) 77.5157 (0.3539,0.0694,0.4791) 0.0025 5.1007

(2,0.5,1) 14.5852 (1.9241,0.4049,1.0643) 0.4672 4.7515
(0.7,0.3,0.001) 188.931 (0.8837,0.1805,0.0011) 0.0144 4.8971

(5,5,5) 352.3011 (7.3549,1.5480,5.3033) 0.4681 4.7513

The moderate curve with β0 = (0.7, 0.04, 0.1) where K=17.5.

β0 J25(β
0) β̂25 J25(β̂

25) K̂
(0.8,0.1,0.3) 2.151e3 (1.0057,0.0582,0.3249) 0.7889 17.2699
(2,0.5,0.4) 4.403e3 (2.7639,0.16,0.4508) 0.7971 17.2696
(0.3,0.05,1) 3.4282e3 (0.5051,0.0287,0.9384) 0.0066 17.5785

(5,5,5) 6.6184e3 (7.6593,0.4435,5.9774) 0.8069 17.2697

The steep curve with β0 = (0.8, 0.01, 0.1) where K=80.

β0 J25(β
0) β̂25 J25(β̂

25) K̂
(0.7,0.2,0.5) 1.4142e5 (1.0855,0.0138,0.597) 31.6162 78.7080

(0.9,0.005,0.2) 2.5195e5 (0.7263,0.0091,0.2402) 0.0308 80.1117
(0.6,0.03,0.9) 8.6528e4 (0.5574,0.0069,1.7452) 0.3821 80.4821

(5,5,5) 1.5097e5 (8.0185,0.1019,6.1419) 32.1897 78.7013

Table 3: The initial and optimized parameters with data from region R2.

6.4 Standard Errors

When we examine the standard errors for β̂n as calculated in equation (9),
we obtain a measure of the reliability (i.e., uncertainty associated with) the
estimated parameter values. Specifically, as more points are sampled from
the asymptotic portion of the curve, the values of the estimated parameters
may or may not improve and the SE may or may not decrease in size. In
addition to using noise free simulated data as in the previous computations,
we will next introduce noise into the data and examine the corresponding
resulting standard errors for the OLS estimation procedures.

As in the case for estimation using noise free data, by sampling data from
R0 alone, we are unable to estimate the values for a or b, and similarly, when
data is sampled from R2 alone, we are unable to estimate the values for a,
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b, or x0. Even if the number of points sampled from each region is doubled,
we expect as before that the estimates will not improve. However, if the
additional points are instead sampled from a portion of R1, we suspect that
the estimates for β̂n might improve. In addition to more accurate estimates,
the standard errors may decrease in size when R1 is included in the sampling
region.

The flat curve with β0 = (0.5, 0.1, 0.1) using β0 = (0.6, 0.2, 0.5).

n0 n1 β̂n Standard Errors
25 0 (0.5418,0.3345,0.0991) (0.011, 0.0078, 0.0051)
49 0 (0.5413,0.332,0.0991) (0.0216, 0.0153, 0.01)
25 24 (0.5,0.1,0.1) (7.5111e−5, 1.8985e−5, 5.2494e−5)

The moderate curve with β0 = (0.7, 0.04, 0.1) using β0 = (0.8, 0.1, 0.3).

n0 n1 β̂n Standard Errors
25 0 (0.7244,0.1414,0.0992) (0.0049, 0.0011, 0.0025)
49 0 (0.7241,0.1401,0.0992) (0.0094, 0.0020, 0.0049)
25 24 (0.6998,0.0397,0.1) (2.2059e−4, 1.4424e−5, 1.5696e−4)

The steep curve with β0 = (0.8, 0.01, 0.1) using β0 = (0.7, 0.2, .5).

n0 n1 β̂n Standard Errors
25 0 (0.8325,0.1238,0.0987) (0.0074, 0.0012, 0.0036)
49 0 (0.8334,0.1280,0.0987) (0.0155, 0.0026, 0.0075)
25 24 (0.8,0.01,0.1) (7.0893e−5, 1.0211e−6, 5.7533e−5)

Table 4: The estimated parameters for β = (a, b, x0) along with standard
errors for the optimized β̂n.

6.4.1 Simulated Data without Noise

We first sampled 25 data points from the region R0 of the data set with no
noise. These points are obtained using a uniform grid with the increment of
1/12 over the region [0, 2]. Note that in the corresponding results given in
Table 4, x̂0 is close to the true value of x0, whereas the estimates for a and
b are not simultaneously very accurate with the inaccuracy increasing as the
steepness of the data curve increases. This is consistent with our results from
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Table 1. In attempts to improve the optimized parameter values as well as the
standard errors, we first refine the grid size within R0. Using the increment
of 1/24 over the region [0, 2], we uniformly sampled 49 points, and observed
that β̂49 is nearly equal to β̂25 , although the standard errors doubled in
size. Since there is no marked improvement in β̂n0 by increasing the number
of sampled points from region R0, we instead doubled the sampling region,
and now included points sampled from R1. Using the increment of 1/12
uniformly over the region [0,4], we sampled 49 points from region R0 ∪ R1.
Using this data set it is seen in Table 4 that β̂49 is a close approximation to
the true value of β0, and the standard errors are reduced by several orders
of magnitude.

The flat curve with β0 = (0.5, 0.1, 0.1) using β0 = (0.6, 0.2, 0.5).

n1 n2 β̂n Standard Errors
0 25 (0.3539,0.0694,0.4791) (0.0702, 0.0182, 0.1684)
0 49 (0.3190,0.0621,0.6709) (0.1668, 0.0435, 0.4931)
24 25 (0.5,0.1,0.1) (7.6421e−4, 1.9291e−4, 5.3446e−4)

The moderate curve with β0 = (0.7, 0.04, 0.1) using β0 = (0.8, 0.1, 0.3).

n1 n2 β̂n Standard Errors
0 25 (1.0057,0.0582,0.3249) (1.0794, 0.0663, 1.3714)
0 49 (1.0058,0.0582,0.3249) (2.1739, 0.1335, 2.7618)
24 25 (0.6996,0.04,0.1003) (5.0686e−3, 3.3366e−4, 3.6103e−3)

The steep curve with β0 = (0.8, 0.01, 0.1) using β0 = (0.7, 0.2, 0.5).

n1 n2 β̂n Standard Errors
0 25 (1.0855,0.0138,0.5970) (1.6669, 0.0224, 4.4595)
0 49 (1.0855,0.0138,0.5970) (3.3488, 0.045, 8.9585)
24 25 (0.7996,0.01,0.1002) (1.4895e−2, 2.1398e−4, 1.2125e−2)

Table 5: The estimated parameters for β = (a, b, x0) along with standard
errors for the optimized β̂n.

We turn to similar computations for data from R2 and R2 ∪ R1. We
sampled 25 data points from region R2, where these points are obtained
using a uniform grid with the increment of 1/6 over the region [12, 16]. Note
in Table 5 that the values for K̂ = â/b̂ are reasonably close to the true
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values of K = 5, 17.5, and 80, respectively for the three data curves. The
corresponding estimates for a, b and x0 are not accurate for any of the curves.
This is consistent with our findings reported in Table 3. In an initial attempt
to improve the optimized values as well as the standard errors, we refined the
sampling grid within R2. Using the increment of 1/12 over the region [12, 16],
we uniformly sampled 49 points. We observe that β̂49 is nearly equivalent to
β̂25, and as before with data in R0, the standard errors double in size. Since
there is no improvement in β̂n2 by increasing the number of sampled points
from region R2, we next doubled the sampling region and included points
sampled from R1. Thus, using the increment of 1/6 over the region [8,16],
we sampled 49 points from the region R1 ∪ R2. Using this data set, β̂49 is
a reasonable approximation to the true value of β0, and the standard errors
are significantly reduced.

6.4.2 Simulated Data with Noise

We considered two different sets of simulated data with noise corresponding
to the moderate curve, i.e., β0 = (0.7, 0.04, 0.1). One set corresponds to the

data in R0 which is perturbed by adding Gaussian noise εj
i.i.d.∼ N (0, σ0) for

j = 1, 2, . . . , n, with σ0 = 0.005. The other data set corresponds to data in R2

with similar added noise except with σ0 = 0.5. These sigma values represent
an added noise level of approximately ten percent at the lowest bound in
the observed regions. Figure 6 depicts the data set with the highest level of
noise.
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Figure 6: Noisy data with σ0 = 0.5 compared to the exact solution with
β0 = (0.7, 0.04, 0.1).
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The moderate curve with β0 = (0.7, 0.04, 0.1) using β0 = (0.8, 0.1, 0.3).

n0 n1 β̂n Standard Errors
25 0 (0.7244,0.1455,0.0988) (0.052, 0.0116, 0.0269)
49 0 (0.7245,0.1452,0.0988) (0.1060, 0.0236, 0.0548)
25 24 (0.7086,0.0517,0.0988) (0.0497, 0.0041, 0.033)
49 48 (0.703,0.0435,0.0994) (0.091, 0.0065, 0.0631)
0 25 (0.7058,0.0491,0.0994) (0.0133, 0.0011, 0.009)
0 49 (0.6958,0.0362,0.1008) (0.0252, 0.0015, 0.0184)

Table 6: The standard errors for the optimized β̂n with σ0 = 0.005 using
data sampled from the interval [0, 4].

We uniformly sampled data with a step size of 1/12 from the intervals
[0,2], [0,4], and [2,4]. Then the sampling frequency is doubled over the same
set of intervals to determine if refining the grid will result in better estimates
with reasonable standard errors. By examining the [0,2] interval, we deter-
mine that the β̂25 does not accurately estimate β0 and the standard errors
double as a result of the grid refinement. As seen in Table 6, the estimates
and the standard errors improve somewhat when sampling from [0,4]. How-
ever, doubling the sampling frequency increases the standard errors without
significant improvement to the estimates. When sampling from the interval
[2,4], we observed improved parameter estimates with reduced standard er-
rors. Thus we see that including the R0 region within the data set results in
worse estimates and larger standard errors than sampling from R1 alone.

The moderate curve with β0 = (0.7, 0.04, 0.1) using β0 = (0.8, 0.1, 0.3).

n1 Interval β̂n Standard Errors
25 [2,4] (0.7058,0.0491,0.0994) (0.0133, 0.0011, 0.009)
49 [2,4] (0.6958,0.0362,0.1008) (0.0252, 0.0015, 0.0184)
49 [2,6] (0.6981,0.0394,0.1006) (0.0355, 0.0023, 0.0255)
73 [2,8] (0.6999,0.04,0.1001) (0.0794, 0.0052, 0.0564)

Table 7: The standard errors for the optimized β̂n with σ0 = 0.005 using
data sampled from various intervals within R1.

Instead of only increasing the sampling frequency over a fixed interval,
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we also considered increasing the sampling region to determine if there is an
improvement in parameter estimation. Based on our findings summarized in
Table 6, we focused on sampling data points from region R1 alone. We have
observed that when a given parameter estimate is already close to the true
value, the standard error corresponding to that parameter becomes discern-
ably worse as the sampling region increases. In this case, even though n is
increased in a region of high sensitivity to all parameters, the OLS proce-
dure is not improved with additional data since the additional data contains
only information already obtained at the lower sampling level, i.e., the ill-
conditioning of χT χ is increasing. These results are displayed in Table 7.

The moderate curve with β0 = (0.7, 0.04, 0.1) using β0 = (0.8, 0.1, 0.3).

n1 n2 β̂n Standard Errors
0 25 (1.0058,0.0582,0.3249) (2.7953, 0.1716, 3.5515)
0 49 (1.0057,0.0582,0.3249) (6.3606, 0.3906, 8.0808)
24 25 (0.5286,0.0297,0.4397) (3.7015, 0.2516, 10.375)
48 49 (0.673,0.0384,0.123) (10.2462, 0.679, 8.8898)
25 0 (0.5175,0.0281,0.4307) (1.0073, 0.0671, 2.8477)
49 0 (0.4713,0.0249,0.5921) (2.1167, 0.1414, 8.0601)

Table 8: The standard errors for the optimized β̂n with σ0 = 0.5 using data
sampled from the interval [8, 16].

We uniformly sampled data with a step size of 1/6 from the intervals
[12,16], [8,16], and [8,12] in Table 8. By doubling the sampling frequency over
the same set of intervals, we again questioned if refining the grid will result
in better estimates with reasonable standard errors. On the [12,16] interval,
we determined that the OLS procedure does not return a good estimate for
β0. When the sampling frequency is doubled, the poor parameter estimate
capability remains and the standard errors double. We included data points
from the upper region of R1 by sampling from the interval [8,16] and there
is slight improvement in the parameter estimates and the standard errors.
However, when we restrict the sampling region to [8,12] the standard errors
improve significantly. Therefore including R2 in the data set increases the
standard error with minimal improvement to the parameter estimates.

In Table 9 we again increased the sampling region instead of primarily
increasing the sampling frequency over a fixed interval to determine if there
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The moderate curve with β0 = (0.7, 0.04, 0.1) using β0 = (0.8, 0.1, 0.3).

n1 Interval β̂n Standard Errors
25 [8,12] (0.5175,0.0281,0.4307) (1.0073, 0.0671, 2.8477)
49 [8,12] (0.4713,0.0249,0.5921) (2.1167, 0.1414, 8.0601)
49 [4,12] (0.6720,0.0383,0.1254) (5.1571, 0.3409, 4.5525)

Table 9: The standard errors for the optimized β̂n with σ0 = 0.5 using data
sampled from various intervals within R1.

is an improvement in parameter estimates. In light of the results from Table
8, we focused on sampling data points from region R1 alone. As the sampling
region expands to include more of the curve in R1, a better estimate for the
parameters β0 is obtained. While we are able to improve our parameter
estimates, the corresponding standard errors are again increased (compare
with Table 7).

7 Concluding remarks

In summary we emphasize several points that are readily illustrated by our
combination of analytical and computational analysis in this note. In inverse
problems, parameter sensitivity is of fundamental importance in several re-
gards:

(i) Lack of sensitivity can produce the inability to even estimate correspond-
ing parameters;

(ii) As illustrated in Table 7, even when parameter sensitivity is adequate,
increased sampling (i.e., larger n) does not necessarily significantly
improve the estimates nor does it necessarily improve at all the re-
liability (i.e., the SE and CI) of the estimates obtained. In particu-
lar, ill-conditioning of the matrix χT χ can increase as data points are
added without adding new information (i.e., adding a row to χ that
is almost linearly dependent on previous rows). This provides an in-
creasing (χT χ)−1

jj and hence an increasing SEj with increasing n even

if σ̂2 = 1
n−p

(RSS) is decreasing. This is especially likely with increased
sampling near steady-states or equilibria of a dynamical system where
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often little new information about dynamics is provided with additional
sampling.

In practice one, of course, usually does not know the exact solution and
may not know all the qualitative properties of the dynamics. But the analysis
and computations in this note in the context of asymptotic statistical esti-
mates for covariance matrices and standard errors suggest that one might
profitably use the sensitivities in a problem to design experiments for addi-
tional data collection.
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